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The baroclinic stability characteristics of axisymmetric gravity currents in a rotating
system with a sloping bottom are determined. Laboratory studies have shown that
a relatively dense fluid released under an ambient fluid in a rotating system will
quickly respond to Coriolis effects and settle to a state of geostrophic balance. Here
we employ a subinertial two-layer model derived from the shallow-water equations to
study the stability characteristics of such a current after the stage at which geostrophy
is attained. In the model, the dynamics of the lower layer are geostrophic to leading
order, but not quasi-geostrophic, since the height deflections of that layer are not small
with respect to its scale height. The upper-layer dynamics are quasi-geostrophic, with
the Eulerian velocity field principally driven by baroclinic stretching and a background
topographic vorticity gradient.

Necessary conditions for instability, a semicircle-like theorem for unstable modes,
bounds on the growth rate and phase velocity, and a sufficient condition for the
existence of a high-wavenumber cutoff are presented. The linear stability equations
are solved exactly for the case where the gravity current initially corresponds to an
annulus flow with parabolic height profile with two incroppings, i.e. a coupled front.
The dispersion relation for such a current is solved numerically, and the character-
istics of the unstable modes are described. A distinguishing feature of the spatial
structure of the perturbations is that the perturbations to the downslope incropping
are preferentially amplified compared to the upslope incropping. Predictions of the
model are compared with recent laboratory data, and good agreement is seen in
the parameter regime for which the model is valid. Direct numerical simulations of
the full model are employed to investigate the nonlinear regime. In the initial stage, the
numerical simulations agree closely with the linear stability characteristics. As the in-
stability develops into the finite-amplitude regime, the perturbations to the downslope
incropping continue to preferentially amplify and eventually evolve into downslope
propagating plumes. These finally reach the deepest part of the topography, at which
point no more potential energy can be released.

1. Introduction
In the world’s oceans, mesoscale gravity currents are geostrophically balanced

flows on a sloping bottom which are driven by the density difference between the
relatively dense current itself and the surrounding water. These currents may occur
when dense water is formed or otherwise released into a shallow sea with a sloping
bottom, such as a continental shelf region, and settles to the bottom. There, the
combined influences of the Coriolis and buoyancy stresses may force the current
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to be transversely constrained and flow along the shelf such that, in the Northern
Hemisphere, shallow water is to its right. Examples of such flows include the initial
migration of Antarctic bottom water (Whitehead & Worthington 1982), deep water
formation in the Adriatic Sea (Zoccolotti & Salusti 1987) and deep water exchange
in the Strait of Georgia (LeBlond et al. 1991). (For a general review of convective
processes in the oceans, see Maxworthy 1997, and for a review of the effects of rotation
on surface or bottom-dwelling gravity currents, with or without bottom slope, see
Griffiths 1986.)

Griffiths, Killworth & Stern (1982) investigated the effects of rotation on the stabil-
ity of a gravity current on a sloping bottom. Their analytical investigation included
a low-wavenumber expansion of a single-layer reduced-gravity model. This analysis
was compared with experiments they performed on the stability of a surface-dwelling
current within a flat-bottomed tank. The results of their analysis and their experimen-
tal observations differed on a few key points, e.g. the instability occurred over finite
wavenumbers, and a dipole-like mode was observed but not predicted theoretically.
The discrepancies between the observations and the theory were attributed to the
possible presence of an unstable baroclinic mode which could not be described by
the reduced-gravity model of Griffiths et al. (1982).

Partly in order to address these issues, analytical models have been constructed
to investigate such flows, such as in Swaters (1991; see also Swaters & Flierl 1991
and Whitehead et al. 1990). They derived a two-layer model to describe the baro-
clinic evolution of rotating density-driven currents on a sloping bottom. The model
corresponds to a sub-inertial approximation to the two-layer shallow-water equa-
tions, where the upper layer is assumed to be quasi-geostrophic and its dynamics are
driven by baroclinic vortex tube stretching and the background topographic vorticity
gradient. The lower-layer dynamics are geostrophic to leading order, but allow for
finite-amplitude thickness variations, since the deflections of the lower-layer height
are of the same order of magnitude as its scale height. Barotropic instabilities are
filtered out of the model, so as to focus on the baroclinic processes, i.e. the instabilities
are driven by the release of the available gravitational potential energy associated
with the downslope position of the centre of mass of the gravity current.

Swaters (1991) examined the linear instability characteristics of the model in the case
where the lower layer takes the shape of a coupled front. It was found that solutions
take the form of along-front travelling waves, with preferential amplification of the
perturbations on the down-slope side of the current. Swaters (1991) also noted that
the model successfully predicts the dipole mode observed by Griffiths et al. (1982).
From a modal point of view, the instability may be thought of as the coalescence of
two topographic vorticity waves which have been excited in the upper layer.

The cross-slope asymmetry of the unstable mode is characteristic of baroclinic
instability, and is a manifestation of the release of the available potential energy. A
number of numerical simulations (e.g. Gawarkiewicz & Chapman 1995; Chapman &
Gawarkiewicz 1995; Jiang & Garwood 1995, 1996; Swaters 1998a) have also shown
that the spatial structure of the baroclinic instabilities associated with density-driven
flows on a sloping bottom are strongly asymmetrical in the cross-slope direction.
This is in contrast to instabilities of surface-driven currents (on an f-plane), where
there is no external force acting to break the underlying cross-current symmetry. This
helps to explain, in part, the discrepancy between the theoretical predictions and the
laboratory experiments described by Griffiths et al. (1982).

The instabilities observed by Swaters (1991) develop into downslope propagating
plumes, and eventually into alongslope propagating cold-core eddies. Swaters (1998a)
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described numerical simulations of the model for coupled fronts and eddies, and
documented the evolution of the downslope plumes into alongslope propagating
eddies. The propagation characteristics of these eddies have been studied by Swaters
& Flierl (1991) and Swaters (1998b). The nonlinear stability of steady solutions to
the model have been examined by Swaters (1993) and Karsten & Swaters (1996) by
exploiting the underlying non-canonical Hamiltonian structure of the model. This
model has also been employed to study the stability characteristics of deep water
replacement in the Strait of Georgia (Karsten, Swaters & Thomson 1995). Recently,
the model has been extended to allow for a continuously-stratified upper layer (Poulin
& Swaters 1999a, b, c).

In the laboratory, mesoscale gravity currents have been reproduced in rotating
tanks with sloping bottoms. For example, Smith (1977) generated bottom currents via
a localized source of dense fluid on an axisymmetric slope. In the parameter regime
of low viscosity, the current was seen to immediately break up into a series of eddies.
This was also observed by Condie (1995) for low viscosity and intermediate rotation
rates, as well as Etling & Chabert d’Hieres (1997) for high rotation rates, low slope,
low density excess and a weak source rate. Similar laboratory observations of eddy
production by a constant source of dense fluid have been made by Nagata et al.
(1993) and Zatsepin, Didkovski & Semenov (1998). (For laboratory studies of the
propagation characteristics of the eddies themselves, see Mory, Stern & Griffiths 1987
and Whitehead et al. 1990.) Fluid behaviour in this parameter regime seems to agree
with the numerical simulations of Jiang & Garwood (1996) as well as the instability
predictions of Swaters (1991, 1998a).

Lane-Serff & Baines (1998) performed experiments where a dense fluid is allowed to
flow over a weir and down a slope. They observe the flow to become geostrophically
constrained and immediately break up into a series of eddies, which propagate
along the slope. They demonstrate that vortex stretching in the upper layer plays an
important role in the formation of eddies (which agrees well with the observations
and numerical simulations of Denmark Strait overflow variability by Spall & Price
1998), and demonstrate that Ekman drainage is an important cause of the vortex
stretching.

Lane-Serff & Baines (1998) argue that baroclinic instability is not significant to
eddy formation in this context by showing that the interaction parameter (denoted µ,
see below) of Swaters (1991) is not correlated with the observed time interval between
eddies. We will demonstrate that, not only does the Swaters (1991) model predict
that those two variables should be uncorrelated, but it predicts that the correlation is
instead between the interaction parameter and a scaled time interval between eddies.
Furthermore, we show that the data of Lane-Serff & Baines (1998) quantitatively
confirms the predicted dependence for the parameter regime in which the Swaters
(1991) model is designed to apply.

Ungarish & Huppert (1998) recently studied the effects of rotation in the axisym-
metric initial value problem (where a dense fluid is released from rest at the centre
of a cylindrical rotating tank) and found that even a slight rotation has the pro-
nounced effect of halting the radial flow and developing a geostrophic balance within
half a rotation of the tank. Although their experiments were performed without a
sloping bottom, centrifugal forces create an effective axisymmetric parabolic bottom
topography. (This effect provided the only bottom topography in the experiments of
Condie 1995.)

Ungarish & Huppert (1998) point out that the steady-state lens shape that the fluid
attains should be considered to be only quasi-steady, i.e. it is ultimately an unstable
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configuration. Given the environmental importance of these near-geostrophic flows
and the practicality of conducting experiments on rotating gravity currents in rotating
cylindrical tanks, it is of interest to determine the instability characteristics of these
flows in this geometrical configuration. The principal purpose of this paper is to
describe the baroclinic instability of this current configuration when a sloping bottom
is present.

In this paper we modify the Swaters (1991) model to investigate the instability of
an initially axisymmetric bottom-dwelling annulus current along a sloping bottom
in a rotating cylindrical geometry. The analogy between stability characteristics in
rectangular and cylindrical geometries was also addressed by Waugh & Dritschel
(1991), who studied the shear instability of strips of uniform potential vorticity in
various two-dimensional models. Their results include the fact that the dispersion
relation for a thin circular strip reduces to that for a linear strip in the limit as the
width of the strip goes to zero. We shall demonstrate that a similar result holds for
the two-layer (i.e. baroclinic) model we employ here.

Our findings include that the baroclinic instability of an axisymmetric current is
most influenced by a parameter, denoted µ, which represents the ratio of the scale
height of the bottom current to the scale height of the bottom topography. Dynami-
cally, this parameter measures the ratio of the destabilizing effect of vortex stretching
to the stabilizing effect of the sloping topography (Swaters 1991). In addition to
describing numerical simulations of the baroclinic destabilization of an axisymmet-
ric rotating gravity current with two incroppings, we derive a number of general
theoretical results including necessary conditions for instability (and hence sufficient
conditions for stability), a semicircle-like theorem for unstable modes, bounds on the
growth rate and phase velocity and conditions for the existence of a high-wavenumber
cutoff. The linear solutions as well as the numerical simulations show the preferential
amplification of the perturbations to the downslope incropping as available potential
energy is released into the instabilities.

The plan of the paper is as follows. The model and geometry are described in § 2.
For a simple current configuration in which the height vanishes at two locations in
the cross-slope direction, an analytic solution is found, and its stability characteristics
are investigated, first for a general height profile in § 3, and then for a specific profile
in § 4. In § 5 we compare the predictions of our theory and the experimental data of
Lane-Serff & Baines (1998). Numerical simulations of the fully nonlinear model are
presented in § 6.

2. Governing equations
Since the model has been derived in detail elsewhere (Swaters 1991), the description

here will be brief. The model is derived from two-layer shallow-water theory via an
asymptotic expansion in terms of the parameter which measures the ratio of the
Nof speed (the speed of a geostrophically balanced density-driven flow on a sloping
bottom; see Nof 1983) to the speed of long internal waves, which is assumed to be
small. The expansion acts as a low band-pass filter which focuses on the sub-inertial
baroclinic dynamics, i.e. filters out internal gravity waves and Kelvin–Helmholtz
instabilities.

The non-dimensional equations of the model can be written in the form

∆ηt + J(h+ η, hB) + µJ(η,∆η) = 0, (2.1)

ht + J(µη + hB, h) = 0, (2.2)
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Figure 1. The geometry of the model used in this paper.

where η, h, and hB denote the upper-layer geostrophic pressure, the lower-layer
height or thickness, and the bottom topography, respectively (see figure 1). Here, the
Jacobian operator J(A,B), denoted as AxBy − AyBx in rectangular coordinates, is for
our purposes thought of as representing the vector operation ê3 · ∇A× ∇B.

The upper- and lower-layer velocities, u1 and u2, respectively, and the lower-layer
geostrophic pressure, p, depend on η and h as expressed in the auxiliary equations of
the model,

u1 = ê3 × ∇η, (2.3)

u2 = ê3 × ∇p, (2.4)

p = hB + µ(η + h). (2.5)

The non-dimensional variables are related to the dimensional (asterisked) variables
via the relations

(x∗, y∗) = L(x, y), t∗ = (sf)−1t, h∗ = µsHh,

u∗1 = µsfLu1, η∗ = µs(fL)2g−1η, u∗2 = sg′H(fL)−1u2,

h∗B = sHhB, p∗ = sρ2g
′Hp,

 (2.6)

where L = (g′H)1/2/f is the internal deformation radius of the upper layer, g′ is the
reduced gravity, H is the mean depth of the upper layer, and

s ≡ hB∗
H

=
s∗g′/f

(g′H)1/2

is the aforementioned asymptotic parameter measuring the ratio of the Nof speed
to the speed of long internal waves, where hB∗ is the scale height for the bottom
topography (precisely, the scale change in topography depth over a distance of L)
and s∗ the scale slope of the bottom topography. We note that s is identical to the
slope Froude number of Maxworthy (1997). Also, we observe that the parameter
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regime in which Etling & Chabert d’Hieres (1997) observe strong eddy formation
in the lower-layer current (high rotation rates, low slope, low density excess and
a weak source rate) is exactly the parameter regime necessary to ensure that s is
small.

The interaction parameter µ is given by

µ =
h∗
hB∗

,

where h∗ is the scale height of the gravity current. The interaction parameter provides
a measure of the ratio of the destabilizing effect of baroclinic vortex tube stretching to
the stabilizing effect of the bottom topography, which acts like a topographic β-plane.
Previous studies of this model in various contexts (Swaters 1991; Karsten et al. 1995)
have found that the baroclinic instability predicted by this model depends strongly
upon the interaction parameter, and we expect a similar dependence here.

Typical values for µ are O(1). In geophysical contexts, Swaters (1991) estimates
µ ≈ 2 for the cold pool observed travelling on the New England Bight by Houghton et
al. (1982), and Karsten et al. (1995) find that µ ≈ 1 is appropriate for the deep-water
replacement current in the Strait of Georgia. These values are readily reproduced
in the laboratory, e.g. Lane-Serff & Baines (1998) generate rotating tank flows on a
sloping bottom with approximately 0.1 6 µ 6 10 (see their figure 12b).

It is important to note that, by focusing on subinertial baroclinic dynamics as
the driving physical process behind the instability of these currents, other dynamical
processes such as higher-frequency effects, barotropic instability, lateral and bottom
friction, mixing, and thermodynamic interactions between the layers are neglected.
Of these processes, the effects of friction may be the most significant, particularly in
laboratory flows. It is therefore necessary to briefly consider the observed effects of
friction on these flows so as to carefully identify the circumstances under which a
frictionless model is appropriate.

On a coupled-front bottom-dwelling current, friction acts to broaden the current,
move it in the downslope direction, and decrease its height, due to loss of mass
through Ekman pumping (Condie 1995). Laboratory flows are easily generated where
viscous effects are small enough that the flow is unstable, and breaks up into a train
of eddies. Typically, the movement of the eddies seems decoupled from the viscous
flow, the former travelling along an isobath, and the latter forming a thin Ekman
layer which flows with a significant downslope component to its velocity (Smith 1977;
Whitehead et al. 1990; Lane-Serff & Baines 1998). Viscous drag on the eddies can
cause them to have a small downslope drift as well, although they have been observed
to have an upslope drift resulting from Ekman draining and upper-layer potential
vorticity conservation (Mory et al. 1987; Whitehead et al. 1990). The viscous flow has
been observed to develop roll waves in certain parameter regimes (Whitehead et al.
1990; Nagata et al. 1993; Zatsepin, Kostyanoi & Semenov 1996; Lane-Serff & Baines
1998).

We take advantage of the observed decoupling of the viscous and inviscid flow,
and determine the instability characteristics of the inviscid part. This means that, in
the laboratory, our analysis applies to flows that are significantly thicker than the
Ekman layer thickness, and for timescales on which Ekman draining does not remove
a significant fraction of the lower-layer mass.

We wish to focus on a cylindrical geometrical configuration. Let r be the radial
coordinate and θ the azimuthal coordinate. Assuming hB = hB(r), it follows from (2.1)
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and (2.2) that

∆ηt − 1

r

∂hB

∂r

(
∂h

∂θ
+
∂η

∂θ

)
+ µJ(η,∆η) = 0, (2.7)

ht +
1

r

∂hB

∂r

∂h

∂θ
+ µJ(η, h) = 0, (2.8)

where J(A,B) = (ArBθ − AθBr)/r.
We are particularly interested in determining the evolution of the perturbed incrop-

pings, i.e. the location where the lower-layer height vanishes. If we project the location
of the intersection of the lower layer with the bottom topography onto a horizontal
plane and denote this function as φ(r, θ, t) = 0, then the kinematic condition gives

∂φ

∂t
+

1

r

∂hB

∂r

∂φ

∂θ
+ µJ(η + h, φ) = 0, (2.9)

evaluated on φ = 0, and the dynamic boundary condition is simply h(φ = 0) = 0.
For boundary conditions, we require no normal flow on the tank walls. In addition,

since we are working in a cylindrical geometry, periodicity with respect to θ must be
satisfied. These conditions may be expressed as

∂η

∂θ
= 0 on r = rmax, (2.10)

η(r, θ + 2π, t) = η(r, θ, t), (2.11)

where rmax is the tank radius.

3. General linear results
It is straightforward to verify that η = η0(r), h = h0(r) is an exact solution to the

nonlinear equations. In order to focus on baroclinic instability (i.e. we are excluding
any possible barotropic instability in the upper layer), we choose to linearize about
the solution where η0 = 0. We study the stability of a current whose height vanishes at
two different values of r, so as to produce an annulus-shape flow with two incroppings
(see figure 1). We thus assume the following form:

h = h0(r) + h′(r, θ, t) for a1 < r < a2,

η = η′(r, θ, t) for 0 < r < rmax,

φ =

{
φ1 = r − a1 + φ′1(θ, t)
φ2 = r − a2 + φ′2(θ, t),

i.e. h0(r) > 0 for r ∈ (a1, a2) and h0(r) ≡ 0 for r ∈ [0, a1] ∪ [a2, rmax].
Upon substituting the above into (2.7), (2.8), and (2.9), and dropping the primes,

the linearized stability equations become

∆ηt − hBr (ηθ + hθ)/r = 0, (3.1)

ht + (hBrhθ − µh0r ηθ)/r = 0, (3.2)

where the subscripts denote partial differentiation. We assume azimuthally-propagating
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normal mode solutions of the form

[η, h, φ1, φ2] = [η̃(r), h̃(r), φ̃1, φ̃2] exp [in(θ − ct)] + c.c., (3.3)

where c.c. stands for the complex conjugate of the preceding expression, and the
wavenumber is written as n to emphasize that it must take integer values to satisfy
the periodicity condition. Note that, dimensionally, n and c, the complex-valued phase
velocity, have units of rad−1 and rad s−1, respectively.

The normal mode problem, after dropping the tildes, is

d

dr

(
r

d

dr
η

)
− n2

r
η + h′B

(
1

c
− µ

c2

h′0(r)
(r − h′B/c)

)
η = 0

h = −µ
c

h′0(r)
(r − h′B/c)η

 for a1 < r < a2, (3.4)

d

dr

(
r

d

dr
η

)
− n2

r
η +

h′B
c
η = 0 elsewhere, (3.5)

where h′0 = h0r and h′B = hBr . Boundary condition (2.10) for the normal mode problem
becomes

η(rmax) = 0, (3.6)

and it is understood, of course, that η(0) must be bounded. The other conditions
required are the jump conditions at the incropping locations r = a1,2. The continuity
of normal mass flux across r = a1,2 implies that η must be continuous across r = a1,2.
It follows from integrating (3.4) across r = a1,2, even if h′0(r) is discontinuous there
(but remains bounded), that the jump in ηr must be zero. Hence the appropriate
matching conditions on η across r = a1,2 are that it be continuously differentiable.

3.1. Semicircle theorem

We may derive a theorem analogous to Howard’s semicircle theorem (Pedlosky 1987)
for the locations in complex phase velocity space of unstable modes. Equations (3.4)
and (3.5) may be written as

d

dr

(
r

d

dr
η

)
− n2

r
η +

h′B
c

(
1 +

µΘ(r)h′0(r)
(h′B − cr)

)
η = 0, (3.7)

where Θ(r) takes the value of unity when a1 < r < a2 (i.e. (3.4) applies), and it equals
zero otherwise (i.e. (3.5) applies). If (3.7) is multiplied by η∗, the complex conjugate of
η, and integrated from r = 0 to r = rmax, then, assuming instability, where c = cR +icI ,
the real and imaginary parts of the resulting expression are, respectively,

cR

{∫ rmax

0

[
r|ηr|2 +

(
n2

r
+

r

|h′B − cr|2µh
′
Bh
′
0Θ(r)

)
|η|2
]

dr

}
=

∫ rmax

0

(
1 +

µh′Bh′0Θ(r)

|h′B − cr|2
)
h′B |η|2dr, (3.8)

and

cI

{∫ rmax

0

[
r|ηr|2 +

(
n2

r
− r

|h′B − cr|2µh
′
Bh
′
0Θ(r)

)
|η|2
]

dr

}
= 0. (3.9)
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If a mode is unstable, then cI 6= 0, and so the integral in (3.9) must vanish. Thus∫ a2

a1

rh′Bh′0
|h′B − cr|2 |η|

2 dr = Q/µ, (3.10)

where

Q ≡
∫ rmax

0

{
r|ηr|2 +

n2

r
|η|2
}

dr > 0. (3.11)

Therefore, a necessary condition for instability is that h′Bh′0 > 0 somewhere in the
flow. If we examine figure 1, in which h′B is a positive constant, we see that a lower-
layer height profile shaped like a coupled front will satisfy the necessary condition
for instability on the downslope side but not on the upslope side. This observation
underscores the asymmetrical cross-front structure of the unstable modes which we
will see.

Assuming instability, we may therefore define

γ2 ≡ max
a16r6a2

h′Bh
′
0.

Then (3.10) gives

γ2

a1

∫ a2

a1

|η|2 dr

|c− h′B/r|2 >
Q

µ
, (3.12)

which, upon rearrangement yields

min
(a1 ,a2)
|c− h′B/r|2 6 µγ2

Qa1

∫ a2

a1

|η|2 dr. (3.13)

In the usual derivation of a semicircle theorem on a β-plane (e.g. Pedlosky 1987),
a Poincaré Inequality is invoked to find an upper bound for the right-hand side.
However, we do not need one here. We observe that

Q =

∫ rmax

0

{
r|ηr|2 +

n2

r
|η|2
}

dr

>

∫ a2

a1

(n2|η|2/r) dr

>
n2

a2

∫ a2

a1

|η|2 dr. (3.14)

Upon substitution of (3.14) into (3.13), one finds

min
(a1 ,a2)
|c− h′B/r|2 6 µγ2a2(n

2a1)
−1. (3.15)

Explicitly, this says that if instability occurs, then the complex phase velocity c
must lie in the region

(cR − c1)
2 + c2

I 6 µγ
2a2(n

2a1)
−1 if cR < c1,

cI 6 γ(µa2/a1)
1/2n−1 if c1 6 cR 6 c2,

(cR − c2)
2 + c2

I 6 µγ
2a2(n

2a1)
−1 if cR > c2,

 (3.16)
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where c1 = mina1<r<a2
(h′B/r) and c2 = maxa1<r<a2

(h′B/r). It follows immediately from
(3.16) that the maximum growth rate possible is

σ = ncI 6 γ(µa2/a1)
1/2. (3.17)

3.2. Other stability results

The semicircle theorem provides bounds on the phase velocity for an unstable mode.
By deriving an alternative set of bounds on the real part of the phase velocity, we may
demonstrate the existence of a high-wavenumber cutoff for the existence of unstable
modes. Upon substituting (3.10) and (3.11) into (3.8), one finds

cR = (2Q)−1

∫ rmax

0

(
1 +

µh′Bh′0Θ(r)

|h′B − cr|2
)
h′B |η|2 dr, (3.18)

from which, upon employing (3.10) and a similar set of arguments to the one which
led to (3.14), one obtains bounds on the real part of the phase velocity

c1/2 6 cR 6 c2/2 + max
(0,rmax)

(rh′B)/(2n2). (3.19)

However, the semicircle theorem already limits the real part of the phase velocity
for an unstable mode,

c1 − γ(µa2/a1)
1/2n−1 6 cR 6 c2 + γ(µa2/a1)

1/2n−1. (3.20)

The relations (3.19) and (3.20) hold even if h′B < 0, in which case cR < 0. When
h′B > 0 for all r, the requirement that (3.19) and (3.20) hold simultaneously means
that the correct range of cR , for sufficiently large n, is

c1 − γ(µa2/a1)
1/2/n 6 cR 6 c2/2 + max

(0,rmax)
(rh′B)/(2n2). (3.21)

When h′B < 0 for all r, the correct range is

min
(a1 ,a2)

(h′B/r)/2 6 cR 6 max
(a1 ,a2)

(h′B/r) + γ(µa2/a1)
1/2/n.

However, upon multiplying through by −1, one finds that this is equivalent to

min
(a1 ,a2)

(|h′B |/r)− γ(µa2/a1)
1/2/n 6 |cR| 6 max

(a1 ,a2)
(|h′B |/r)/2,

which is a range of |cR| contained within (3.21). Thus, we redefine c1 =
mina1<r<a2

(|h′B |/r) and c2 = maxa1<r<a2
(|h′B |/r), so that (3.21) is true as stated for

h′B > 0 and h′B < 0.
So for an unstable mode to exist, it must necessarily be true that

c1 − γ(µa2/a1)
1/2/n 6 c2/2 + max

(0,rmax)
(r|h′B |)/(2n2). (3.22)

We can use this relation to show the existence of a high-wavenumber cutoff for
unstable modes. However, the above will hold true for all sufficiently large n if
c1 6 c2/2. Thus for the purposes of this proof, we assume the contrary, i.e. that

c2 < 2c1. (3.23)

Physically, this requirement says that the current must be sufficiently narrow with
respect to its distance from the origin, e.g. with a linearly sloping bottom, (3.23)
reduces to a2 < 2a1. Clearly, this requirement would have no analogy in the problem
studied in a rectangular geometry (see Swaters 1991), since that problem may be
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thought of as a limiting case of this one where the radius of the tank goes to
infinity, while the distance of the current from the edge of the tank is held fixed,
i.e. the problem studied by Swaters (1991) is recovered in the limit as a1 → ∞ with
a2− a1 and rmax− a2 held fixed. We cannot apply these arguments to the experiments
described by Griffiths et al. (1982) since they were of surface currents over a flat
bottom, so essential aspects of the theory we develop here are missing. However, as
evidence that (3.23) is satisfied by reasonable laboratory parameters, we observe that
each one of the annulus currents reported by Griffiths et al. (1982) do indeed satisfy
a2 < 2a1.

Assuming (3.23), we may rearrange (3.22) into a quadratic inequality in n, from
which the quadratic formula yields

n 6 nmax =

γ
(
µa2a

−1
1

)1/2
+

[
γ2µa2a

−1
1 +

(
max
(0,rmax)

(r|h′B |)
)

(2c1 − c2)

]1/2

2c1 − c2

, (3.24)

which establishes a high-wavenumber cutoff for unstable modes, i.e. any mode with
wavenumber greater than nmax is stable.

We emphasize that (3.23) is merely a sufficient condition, not a necessary one, for the
existence of a high-wavenumber cutoff. We conjecture that a high-wavenumber cutoff
exists even when (3.23) is violated. This is consistent with the numerical solutions of
the dispersion relation we present in the next section.

Maintaining assumption (3.23), we may derive a lower bound for the interaction
parameter µ required for instability (for a given n). Equation (3.22) may be solved for
µ to find that if

c1 − c2/2− max
(0,rmax)

(r|h′B |)/(2n2) > 0, (3.25)

then the existence of an unstable mode requires that

µ > µmin =
n2a1

γ2a2

[c1 − c2/2− max
(0,rmax)

(r|h′B |)/(2n2)]2. (3.26)

Since the parameter µ = h∗(s∗L)−1 , where h∗, s∗ and L are, respectively, the maximum
height of the gravity current, the slope of the bottom topography and the horizontal
length scale which is the internal deformation radius based on the mean thickness
of the upper layer, µmin can be interpreted as requiring a minimum current height
(for a given bottom slope and stratification) for baroclinic instability. It would be
interesting to test this prediction against laboratory experiments.

4. Solution for a parabolic height profile
We investigate the linear stability problem for the case where the bottom topography

is conical, i.e. hB = r (see figure 1), and where the lower-layer height profile is specified
to be parabolic in the radial direction with two incroppings. Let

h0(r) = 1− (r − r0)2/a2, (4.1)

where the new parameters, r0 and a denote the radius of maximum height of the
current (h0(r0) = 1) and the half-width of the current, respectively. To relate these to
the parameters defined previously, the incropping locations are given by a1 = r0 − a
and a2 = r0 +a. Note that this initial shape for the bottom current indeed satisfies the
necessary condition for instability that there exist r-values for which h0r > 0, and that
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this occurs on the side of the current closest to the axis of rotation. For this current
to satisfy the sufficient condition (3.23) for the existence of a high-wavenumber cutoff,
we require that a < r0/3.

For h0 given by (4.1), (3.4) and (3.5) become

η′′ +
1

r
η′ +

(
1

cr
− n2

r2
+

2µ

c2a2

r − r0
r(r − 1/c)

)
η = 0 for r0 − a < r < r0 + a, (4.2)

η′′ +
1

r
η′ +

(
1

cr
− n2

r2

)
η = 0 elsewhere, (4.3)

where (∗)′ = (∗)r . Equation (4.3) has the closed-form solution

η = AJ2n(2c
−1/2r1/2) + BY2n(2c

−1/2r1/2), (4.4)

where J and Y denote Bessel and Neumann functions, respectively, and A and B
are constant coefficients which must be determined from the boundary conditions.
A and B will, of course, be different in each of the two regions 0 < r < r0 − a and
r0 + a < r < rmax.

A Frobenius solution to (4.2) can be constructed, but there are some mathematical
technicalities which need to be considered. Note that (4.2) has two regular singular
points: one at r = 0, and another at r = 1/c. The expansion is required to converge
for all r0 − a < r < r0 + a. Because of the existence of both regular singular points,
no single complex r can be chosen such that the expansion about that point will
converge for all real r ∈ (r0− a, r0 + a). For example, an expansion about r = 1/c will
fail to converge at r = r0 if |1/c| < r0/2, but an expansion about r = r0 will fail to
converge at r = r0 + a if |r0 − 1/c| < a. Thus, for any given complex c, a Frobenius
expansion is performed about the regular singular point r = 1/c if |r0− 1/c| 6 a, and
the expansion is performed about the regular point r = r0 if |r0 − 1/c| > a.

In this way, two linearly independent solutions to (4.2) can always be constructed.
Let η1 and η2 denote these two solutions. Since we are required to calculate η1 and η2

for various complex values of c in order to determine the solution to the dispersion
relation, care must be exercised to ensure η1 and η2 are consistently defined for the
different expansions. For either expansion, we define η1 and η2 such that

η1(r0) = 1, η′1(r0) = 0, η2(r0) = 0, η′2(r0) = 1. (4.5)

Thus the solution to (4.2) and (4.3) may be written in the form

η(r) =


AJ2n(2r

1/2c−1/2) for 0 6 r 6 r0 − a
Bη1(r) + Cη2(r) for r0 − a < r < r0 + a

DJ2n(2r
1/2c−1/2) + EY2n(2r

1/2c−1/2) for r0 + a 6 r 6 rmax,

(4.6)

where A, B, C , D and E are arbitrary constants and we have employed the condition
that η be bounded at the origin.

The dispersion relation is obtained by applying the jump conditions

[η] = 0 and [η′] = 0 at r = r0 ± a,
and the remaining boundary condition η(rmax) = 0 to the solution (4.6). This produces
five equations in the five unknown arbitrary constants. The necessary condition
that there exists a non-trivial solution to these homogeneous equations is that the
determinant of the matrix of their coefficients vanishes. This requirement determines
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Figure 2. The dispersion relation with parameters µ = 1, rmax = 2π, a = 0.75 and r0 = 2π− 2a.
Modes not shown with 10 < n 6 nmax = 27 are stable.

(a) (b)

Figure 3. The spatial form of the most unstable mode shown in figure 2 (n = 5). Parameters are
µ = 1, rmax = 2π, a = 0.75 and r0 = 2π− 2a. (a) Upper-layer stream function or geostrophic pressure
(the contour interval is 0.066); (b) lower-layer height (the contour interval is 0.3). Dotted lines
indicate negative values.

the dispersion relation, which we write formally as

c = c(µ, a, rmax, n, r0),

and which we solve numerically.
The dispersion relation is shown in figure 2, where we plot the growth rate, σ = n|cI |,

and the angular phase speed, cR , versus wavenumber for parameter values µ = 1,
a = 0.75, rmax = 2π and r0 = 2π − 2a. Besides the discrete wavenumber required to
satisfy periodicity conditions, the plots match qualitatively the analogous plots found
by Swaters (1991) and Karsten et al. (1995), each of whom used similar models,
but in different geometries and applications. The matching features include the fact
that the growth rate goes linearly to zero as the wavenumber approaches zero, the
existence of a maximum growth rate at a particular wavenumber, and the existence
of a high-wavenumber cutoff.

According to figure 2, the most unstable wavenumber is n = 5. To relate this
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Figure 4. Dependence of disturbance characteristics upon interaction parameter µ. Other parameter
values are rmax = 2π, a = 0.75 and r0 = 2π − 2a. Solid line represents the monopole mode, dashed
line represents the dipole mode. Wavenumber discretization is the cause of the jagged appearance
of some of the plotted lines.

to dimensional variables, the wavelength of the fastest growing wave (as measured
around the circle of radius r0) is 2πr0L/5 ≈ 6.0L for the parameters used in figure
2. Assuming typical laboratory parameters of H = 20 cm, g′ = 2.5 cm s−2, and f =
1.0 s−1, one finds L ≈ 7 cm, so that the wavelength of the fastest growing wave is then
42 cm.

When cI = 0, then the point rc = 1/c will be a critical point provided a1 < rc < a2.
This occurs for one point shown in figure 2, on the upper branch of the neutral curve
at n = 10. Despite the presence of the critical r value, the η and h fields corresponding
to that point are well behaved; η(r) is observed to pass through zero linearly with
(r−1/c), so that h(r) ∝ η(r)/(r−1/c) is O(1) there, as are the other physical quantities.
We have run a numerical simulation of the fully nonlinear model, using the numerical
procedure described in § 6, which was initialized with fields corresponding to this
point on the neutral curve, and we see no evidence of the critical point affecting the
solution.

Figure 3 displays the spatial form of the most unstable mode (n = 5) for the same
set of parameters as in figure 2 (i.e. µ = 1, a = 0.75, rmax = 2π and r0 = 2π − 2a).
Note that the lower layer is deformed on the downward side more than on the
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(a) (b)

Figure 5. The spatial form of the most unstable dipole mode at µ = 10 (n = 11). Parameters are
rmax = 2π, a = 0.75 and r0 = 2π− 2a. (a) Upper-layer stream function or geostrophic pressure (the
contour interval is 0.0066); (b) lower-layer height (the contour interval is 0.26). Dotted lines indicate
negative values.
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Figure 6. Dispersion relation for h′B = −1, and all other parameters exactly as in figure 2. Modes
not shown are stable.

upward side. This is a result of the lower layer losing potential energy to fuel the
instability.

The normal mode solutions become more unstable as the interaction parameter µ
increases. Figure 4 shows the maximum growth rate σ versus µ where the remaining
parameters have the values a = 0.75, rmax = 2π and r0 = 2π − 2a. Also plotted are
the phase speed cR , wavenumber n and scaled wave period 1/(cRn) corresponding to
the maximum growth rate. The scaled wave period is a quantity that may readily be
compared with experimental data, which we will do in § 5. The maximum growth rate
and corresponding wavenumber display a strong dependence on µ. Note that a new
unstable mode exists for µ > 3.5. This mode is the dipole mode, whose spatial form
is shown in figure 5 for µ = 10, a = 0.75, rmax = 2π and r0 = 2π− 2a.

Since many rotating tank experiments have been performed with axisymmetric
bottom topography which slopes away from the centre (e.g. Smith 1977; Nagata et
al. 1993; Zatsepin et al. 1996, 1998; Lane-Serff & Baines 1998), we show in figure 6
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Figure 7. Other parameter dependences. In each plot, the filled circle corresponds to the reference
case shown in figure 2. (a) Maximum growth rate versus half-width of the lower layer. (b) The
dependence of the wavenumber of maximum growth on the mean radius of the lower layer r0. Open
circles are for parameters µ = 1, a = 0.75 and rmax = 7.5, for comparison with figure 2, with the filled
circle at r0 = 2π− 2a. × symbols are for parameters µ = 2, a = 1.0 and rmax = 7.5, for comparison
with Swaters (1991), represented by the dashed line n = 1.421r0. The × symbols falling below the
dashed line is an indication that the instability takes place on the downslope side of the current.
(c, d) Dependence of the scaled wave period, 1/(cRn) where cR and n are for the fastest-growing
mode, on a and r0 respectively. The lack of strong dependence helps justify the parameters chosen
for figure 9.

the dispersion relation when h′B = −1. The growth rate and phase speed appear
qualitatively similar to those shown in figure 2. One difference is that the curve
appears to be shifted towards higher wavenumber, so that the maximum-growth
wavenumber is n = 6. This is consistent with the idea that the important physical
process leading to the growth of instability takes place on the downslope side of the
current, since, although r0 is the same in figures 2 and 6, the downslope side of
the current traces a longer path when h′B = −1. So, for a given physical wavelength,
the downslope side will have a higher wavenumber n when h′B = −1. Other differences
between figures 2 and 6 are that figure 6 shows a slightly smaller maximum growth
rate as well as significantly smaller phase speeds, particularly at small wavenumbers.

We show in figure 7 the dependence of the maximum growth rate and corresponding
wavenumber upon the gravity current half-width a and the mean radius of the gravity



Baroclinic instability of axisymmetric rotating gravity currents 165

current r0. Also shown is the dependence of the scaled wave period upon a and r0. We
have found that the linear instability results are relatively insensitive to the parameter
rmax, so figure 7 results have been calculated with rmax = 7.5 to allow for a wider
range of a and of r0 to be investigated. Figure 7(a) indicates that gravity currents
of half-width greater than or equal to the deformation radius L will have similar
growth rates, but those of half-widths less than L will be somewhat slower-growing
instabilities. Note also for figure 7(a) that the wavenumber corresponding to the
maximum growth rate is 5 for all a except for a = 1.25, the largest value tested. Thus,
the fastest-growing wavenumber is relatively insensitive to the current width.

The dependence of the fastest-growing wavenumber on the mean radius of the
lower-layer current is shown in figure 7(b). The circles show the dependence when
the parameters are as for the reference case (except for rmax = 7.5), which is shown
in figure 2. The wavenumber is strongly dependent upon r0. Assuming the effective
length of the current can be taken to be 2πr0, and neglecting curvature effects so that
the analysis of Swaters (1991) applies to the current, the number of waves appearing
along the current for alongslope wavenumber k is n = kr0, i.e. a linear dependence on
r0. Swaters (1991) quotes the maximum-growth wavenumber for a = 1.0 and µ = 2.0
to be k = 1.421. Shown in figure 7(b) is the line n = 1.421r0, as well as the dependence
of the fastest-growing wavenumber on r0 when a = 1.0 and µ = 2.0. It is worth noting
that the wavenumbers fall below the values one would expect if curvature effects are
ignored. This implies that the effective length of the current should not be taken as
2πr0, but rather some length intermediate to 2πr0 and 2π(r0− a). That is, the effective
radius of the current is on the downslope side of r0. This is further evidence that it is
the downslope side of the current that is important in the instability.

Figures 7(c) and 7(d) show that the scaled wave period, 1/(cRn) where cR and
n correspond to the most unstable mode, is relatively insensitive to the lower-layer
half-width a and the mean lower-layer radius r0. This allows us to have confidence
that our choice of parameter values does not strongly affect the results when we
compare in figure 9 the scaled wave period to laboratory data.

In figure 7(a), the parameter range of a which we examined was such that the
necessary condition for the existence of a high-wavenumber cutoff (3.23) was always
satisfied. It is interesting to note that the condition to ensure convergence of at least
one of the two Frobenius series used to calculate η1(r) and η2(r) (see the discussion
before (4.5)) for all possible choices of complex phase speed c is precisely the same
as the necessary condition for the existence of a high-wavenumber cutoff. That is, if
the current width a is such that a > r0/3, which is the regime in which we cannot
prove that a high-wavenumber cutoff exists, then there exist c for which neither the
Frobenius series expanded about r = r0 nor the one expanded about r = 1/c converge
for some r0 − a 6 r 6 r0 + a. We have not been able to identify any physical reason
why the two conditions should coincide.

To investigate whether the high-wavenumber cutoff exists outside the parameter
range for which its existence has been proven, we have performed linear stability
calculations including the regime a > r0/3 (specifically, for r0 = 4.75 and 1.0 6 a 6
3.1), with ordinary differential equation solution by the method of Frobenius replaced
by numerical methods such as the fourth-order Runge–Kutta method. We have
observed that the high-wavenumber cutoff follows a trend towards lower wavenumbers
as a increases, both for a < r0/3 and a > r0/3. This implies that the high-wavenumber
cutoff does indeed exist beyond the range of parameters for which we have proven.
This was confirmed by a numerical simulation of the full model (see § 6 for numerical
method description), which showed low-wavenumber mode growth for a wide lower
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Figure 8. Growth rate and phase velocity versus scaled wavenumber n/r0 for r0 = 4
(dashed lines, ×) and r0 = 10 (solid lines, +). Parameters are µ = 2, a = 1 and rmax = r0 + 2a.

layer (for r0 = 3 and a = 2, the n = 2 mode was dominant). Of course, since one can
only check a finite number of parameters numerically, this does not constitute proof,
but merely suggestive evidence.

The behaviour in the rectangular case should be recovered as the radius of the
tank becomes large. Mathematically, this is done by introducing the transformation

c→ c̃/r0, n→ kr0, θ → x/r0, r → r0 − y, (4.7)

then taking the limit as r0 → ∞. Then c̃, k, x, and y correspond to the phase
velocity, wavenumber, along-current coordinate, and cross-current coordinate of the
rectangular case, respectively. Introducing this transformation in (4.2) and (4.3) and
taking the limit as r0 →∞, one obtains

ηyy − {k2 − c̃−1 + 2µ[a2c̃(c̃− 1)]−1y}η for |y| < a, (4.8)

ηyy − {k2 − c̃−1}η for |y| > a, (4.9)

which are exactly the normal mode equations found by Swaters (1991).
Figure 8 shows the growth rate curve for r0 = 4, and r0 = 10 with the other

parameter values of µ = 2, a = 1, and rmax = r0 + 2a, which were chosen as such to
facilitate comparison with Swaters (1991).

It can be seen that as r0 increases, the maximum growth rate does not change much,
while the most unstable wavenumber increases slightly. This implies that the most
unstable wavenumber is lower in the axisymmetric geometry than in the rectangular
geometry. Thus, the instability takes place at longer wavelengths, as measured at
the centre of the current. This is reasonable since the instability takes place at the
downward side of the current, which is, for our bottom topography, in the direction
of decreasing radius.

5. Comparison with experimental data
Lane-Serff & Baines (1998), in their experimental study of dense eddies forming

along a sloping bottom in a rotating system, measure Tint, the time interval between
one eddy and the next, for a variety of parameters. They demonstrate that Tint/T ,
where T is the period of rotation of the tank, is not at all correlated with the
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Swaters (1991) interaction parameter, µ, and conclude that baroclinic instability is
not an important physical process in the formation of the eddies they observed.
However, Swaters (1991) does not specify what dependence Tint/T should have on µ.
To facilitate comparison between model predictions and experimental observations
of Tint in the future, we document here the predictions of our model.

If the eddies are the result of baroclinic instability, then it is possible that they
are formed from the nonlinear growth of the linear perturbations (Swaters 1991,
1998a). We test this hypothesis by comparing the measured time interval between
eddies, Tint, to the period of the most unstable mode as determined by our linear
baroclinic instability theory. We emphasize that the data of Lane-Serff & Baines
(1998) is for fully formed eddies, which are certainly not described by the linear
theory of sinusoidal perturbations to a steady current. In fact, Lane-Serff & Baines
(1998) observed that the eddies formed immediately after flowing over the weir, before
any steady current could be formed. Thus, the comparison we make is simultaneously
a test of our model of baroclinic instability as well as the notion that the eddy time
interval matches the wave period. That is, we are testing the hypothesis that baroclinic
instability causes the growth of the eddies and that linear theory successfully predicts
the characteristic time interval over which the eddies will tend to grow.

In dimensional units, the wavelength at a radius of r0 is 2πr0L/n, the dimensional
wave speed is r0LcRsf, and the period of rotation of the tank is T = 4π/f, so that
the theoretical dependence is

Tint

T
=

1

2scRn
, (5.1)

where n and cR are the wavenumber and angular phase speed corresponding to the
most unstable mode. Since the model does not explicitly contain s, we test (5.1)
by comparing 2sTint/T , as measured by Lane-Serff & Baines (1998), to 1/(cRn), as
predicted by the linear stability theory of the previous section (see figure 4d).

For a given value of µ, we found cR and n for the most unstable mode of a steady
coupled-front current configured as shown in figure 1 and as given by (4.1), with
parameter values of a = 0.75, rmax = 2π and r0 = rmax − 2a ≈ 4.783 (corresponding to
the solid dot in figure 7). These parameters were chosen such that a is O(1), while the
front locations are well away from r = 0 and r = rmax, i.e. to produce typical linear
stability results. With these parameters, the dimensional width of the current (and
therefore the eddy diameter as well) is assumed to be on the order of the Rossby
deformation radius of the upper layer. We are confident that the results are not
sensitive to these parameter choices since 1/(cRn) is nearly constant as a and r0 vary,
as shown in figures 7(c) and 7(d), respectively, and none of the stability characteristics
depend strongly on rmax.

The results are displayed in figure 9, where the laboratory measurements are
represented by discrete points, and the theoretical prediction is represented by the
solid line. That is, the discrete points correspond to plotting 2sTint/T versus µ as
determined by the data of Lane-Serff & Baines (1998), and the solid line is our
theoretical prediction of 1/(cRn) versus µ for the most unstable mode.

The data of Lane-Serff & Baines (1998) are for fully formed eddies, whereas the
theoretical prediction is for the most unstable mode of an idealized steady coupled-
front current, as calculated from linear theory. Despite this difference, the data and
the theory are seen to agree quantitatively for several data points. Moreover, it is
precisely those data for which the scaled slope parameter s is smallest (i.e. the solid
dots in figure 9) that agree with the predictions of the model. Since this model was
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Figure 9. Comparison of predictions of linear theory with laboratory data of Lane-Serff & Baines
(1998). Filled circles, open circles and plus symbols correspond to laboratory data for 2sTint/T for
which s 6 0.2, 0.2 < s 6 0.5 and s > 0.5, respectively, plotted as a function of µ. The solid line
shows 1/(cRn) for the fastest growing mode at each µ, as predicted by linear instability theory.

derived via an asymptotic expansion in s for s� 1, it does not apply in the limit as
s→ 1, and this is also reflected in figure 9.

The fact that there is quantitative agreement between the linear instability analysis
of this model and experimental data on travelling eddies supports the hypothesis of
Swaters (1991,1998a) that baroclinic instability is indeed the physical mechanism that
leads to the formation of these eddies. Lane-Serff & Baines (1998) provide evidence
that the eddies were formed through vortex stretching effects. This is consistent with
our observations since the dynamics of the upper layer in this model are driven by
vortex tube stretching.

Albeit indirect, figure 9 shows the first experimental evidence confirming the baro-
clinic instability predictions of the Swaters (1991) model. However, for the same data
set, Lane-Serff & Baines (1998) observe that the propagation speed of the eddies does
not agree well with the Nof (1983) speed, which is the dependence this model predicts.
Clearly, more complete experimental tests of this model are desirable. In particular,
laboratory studies can answer questions such as: over what range of s does this model
apply?

6. Numerical results
The method used to integrate the model forward in time is similar to the method

used by Swaters (1998a,b). The model is rewritten as

qt + J(η, q + hB) = 0, (6.1)
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Figure 10. 〈KE〉 versus integration time for the numerical simulation.

ht + J(η + hB, h) = ν∆h, (6.2)

∆η = q − h, (6.3)

where µ has been set explicitly to unity, and numerical friction of the form ν∆h
was added to the lower-layer equation to suppress high-wavenumber features in the
solutions. The friction coefficient was taken to be 10−3 for all the simulations reported
here. Equations (6.1) and (6.2) were integrated using a second-order leapfrog method
with the Arakawa (1966) finite difference scheme used for the Jacobian. A Robert
filter (Asselin 1972) with coefficient 0.005 was used to suppress the computational
mode. Then, (6.3) yielded η at each time step via a Poisson equation direct solver.

To avoid the 1/r singularity in the polar form of the Jacobian terms, these equations
were expressed in rectangular coordinates for their numerical integration. Thus, the
geometry used was a 256× 256 point grid in the domain

Ω = {(x, y)| − 2π 6 x 6 2π,−2π 6 y 6 2π},
with Dirichlet boundary conditions. Despite the fact that the numerical integration
was performed in rectangular coordinates, the solution found converges to the true
solution for cylindrical coordinates so long as the bottom topography and the initial
conditions were appropriate for cylindrical coordinates, and so long as the solution
found had all the relevant behaviour remaining far from the corners of the rectangular
domain, which had to be checked a posteriori.

The bottom topography and the initial condition for the bottom current were
slightly different than for the analysis of the linearized model, to ensure smooth
derivatives everywhere. The bottom topography was hyperbolic, with the linear slope
as asymptotes,

hB(r) = (r2 + B)1/2 − 2π, (6.4)
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(a)

(b)

Figure 11(a, b). For caption see opposite.

where B was chosen to be 0.628. This choice of bottom topography possesses
smooth derivatives of all orders, while h′B remains within 3% of unity for all
3.2 6 r 6 rmax = 2π. The initial condition for the bottom current was

h0 = h(r, θ, 0) =

 {1 + cos [π(r − r0)/a]}/2 for |r − r0| 6 a
0 for |r − r0| > a,

(6.5)

where a = 0.75 and r0 = 2π−2a were typical values for the simulations reported here.
No initial perturbation was introduced into the lower layer. The lower-layer height
at each gridpoint in the domain was allowed to evolve forward in time as determined
by the model equations already stated, with no special treatment necessary to deal
with the evolution of the incropping location. At gridpoints where roundoff error led
to unphysical negative values of the lower layer height, the height was reset to zero.

The destabilization was initiated by the introduction of perturbations into the upper
layer. The initial condition for the upper-layer stream function is a linear superposition
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(c)

(d )

Figure 11(c, d). Upper-layer stream function (left) and lower-layer height (right) at times t = (a)
0, (b) 10, (c) 20 and (d) 40. Darker shades denote larger values. Lower-layer ranges are (0.0, 1.0),
(0.0, 0.96), (0.0, 0.96), (0.0, 84), and upper-layer ranges are (−0.07, 0.07), (−0.52, 0.65), (−0.74, 0.9)
and (−1.05, 1.89) for times 0, 10, 20 and 40, respectively.

of a range of wavelengths in the x- and y-directions, with random amplitudes and
phase shifts. For the parameters used in these simulations, wavenumbers in the range
1 to 10 were chosen because the most unstable wavenumber as determined by linear
theory is n = 5. The amplitudes for these modes making up the initial upper-layer
stream function are such that the upper-layer kinetic energy is 1% the potential
energy of the lower layer, i.e.∫ ∫

Ω

∇η0 · ∇η0 dx dy∫ ∫
Ω

h2
0 dx dy

= 10−2. (6.6)

The initial condition for q, the upper-layer vorticity, is calculated from h0 and η0

through (6.3).
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Figure 10 displays the evolution of the area-averaged upper-layer kinetic energy,

〈KE〉(t) =

∫ ∫
Ω

∇η · ∇η dx dy∫ ∫
Ω

∇η0 · ∇η0 dx dy

. (6.7)

The initially exponential increase in 〈KE〉 (which, due to the logarithmic vertical axis
in figure 10, appears as a linear relationship between t = 5 and t = 10) suggests that
the instability is developing in a manner that is consistent with the linear theory.
However, it is seen that 〈KE〉 soon saturates, after which it does not grow further.
Since the growth of 〈KE〉 is at the expense of the release of potential energy of the
lower layer, the saturation of 〈KE〉 corresponds to the point at which the lower layer
has completely slumped into the centre of the tank, at which point it can lose no
more potential energy (see figure 11d).

Quantitatively, while linear theory predicts an exponential growth rate for 〈KE〉
of 1.02 (twice the maximum growth rate in figure 2), the measured growth rate for
the curve seen in figure 10 is 0.70. To test for the source of the discrepancy, we have
performed further numerical simulations, adjusting: the lower-layer height profile, h0,
from sinusoidal to parabolic; the bottom topography, hB , to exactly linear; the initial
perturbation amplitude, as expressed through the ratio of upper-layer kinetic energy
to lower-layer potential energy (see (6.6)); and which modes are excited initially, from
a random superposition of wavenumbers 1 6 n 6 10 to n = 5 only. We have found
that changing only h0 and hB yields a lower growth rate (0.77) than does changing the
initial perturbation amplitude to 10−4 (0.81) or initializing only with the n = 5 mode
(0.84). Making all these changes simultaneously yields a growth rate of 0.95. Thus,
we conclude that, while the growth rate depends somewhat on the shapes of h0 and
hB , it is the nonlinear interaction of the various modes present that most significantly
contribute to the quantitative difference in the growth rates as predicted by the linear
theory of § 4 and the numerical simulations of this section.

Figure 11 shows snapshots of the upper-layer stream function and the lower-layer
height at times t = 0, 10, 20 and 40. At t = 10, the n = 5 mode is clearly seen in
both the upper-layer stream function and the lower-layer height, and these match
qualitatively well with the linear theory predictions (see figure 3). Note how the lower-
layer current indeed amplifies on the downslope side more than on the upslope side.
By t = 20, the motion is well into the nonlinear regime, judging from the relatively
complex form the lower layer takes. The nonlinearity is also indicated in figure 10,
where it can be seen that the kinetic energy is no longer in the exponentially growing
stage. Five distinct plumes of lower fluid have emerged from the n = 5 wave. By
t = 40, they have already disappeared and the fluid seems thoroughly disorganized.

In order to follow the evolution of the azimuthal modes with time, we calculate at
each time step the radially averaged azimuthal spectrum S(n, t) for the upper-layer
stream function. To do this, we first find the nth azimuthal Fourier mode at a fixed
radius

η̃(r, n, t) = (2π)−1

∫ 2π

0

η(r, θ, t) exp (−i nθ) dθ. (6.8)

We then form the modulus and integrate out the r-dependence

S(n, t) =

∫ rmax

0

|η̃(r, n, t)|r dr, (6.9)
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Figure 12. Radius-averaged azimuthal spectrum versus time.

where the extra factor of r in the integrand is inserted to account for the fact that
modes occurring at larger radii span more area. The azimuthal spectrum is plotted
in figure 12 versus wavenumber and time.

It is readily seen that the n = 5 mode is the dominant one. The n = 1 mode
starts growing significantly after about t = 12. Thereafter, the n = 5 mode starts to
decay, seemingly losing its energy to the low-wavenumber modes. We have found
good agreement between the numerical simulations of this model and the linear
instability analysis for other parameter values as well. For example, figure 13 shows
images from two simulations in which the mean radius of the lower layer r0 is varied
to determine the effect upon the fastest-growing wavenumber. The parameters were
chosen to match corresponding data points shown in figure 7(b). The linear results
predict n = 3 for r0 = 3, and this agrees very well with figure 13(a). The linear results
predict n = 6 for r0 = 6, and the corresponding numerical simulation images are
shown in figure 13(b). The agreement is not as obvious as in the lower-wavenumber
cases. One can count seven plumes in the lower-layer, but they are not of uniform
wavelength. There are indeed six regions of negative upper-layer stream function, with
two of very small amplitude. Seven regions of positive upper-layer stream function
are present, but two are very weak. The non-uniformity of the wave magnitudes is
most likely due to the random initial conditions.

7. Summary
The baroclinic stability characteristics of axisymmetric rotating gravity currents

have been determined. The model we have used is an adaptation of the model by
Swaters (1991) which corresponds to a subinertial approximation to the two-layer
shallow water equations which filters out barotropic instability and focuses on the
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(a)

(b)

Figure 13. Upper-layer stream function (left) and lower-layer height (right) for runs identical to
the one shown in figure 11, except that rmax = 7.5 and r0 = 3 (a) and r0 = 6 (b). r0 = 3 run shown
at t = 12, and r0 = 6 run shown at t = 10. Darker shades denote larger values. Lower-layer ranges
are (0.0, 0.94) and (0.0, 0.97), and upper-layer ranges are (−0.34, 0.48) and (−0.57, 0.79), for r0 = 3
and r0 = 6, respectively.

baroclinic dynamics while allowing for finite-amplitude thickness variations in the
gravity current.

Several general theoretical results were obtained including necessary conditions for
instability, a semicircle-like theorem, bounds on the growth rate and phase velocity and
a high-wavenumber cutoff. The instability proceeds by the perturbations extracting
the available gravitational potential energy associated with the cross-slope position
of the gravity current. Equivalently, this may thought of as the net up-topographic-
gradient transport of heat, i.e. classical baroclinic instability. From the modal point
of view, the instability corresponds to the coalescence of two azimuthally propagating
topographic Rossby waves in the overlying fluid.

The interaction parameter, which is the ratio of the scale height of the bottom
current to the scale height of the bottom topography, strongly influenced the instabil-
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ity. Dynamically, this parameter measures the strength of the destabilizing effects of
baroclinic stretching to the stabilizing effect of the background topographic vorticity
gradient. For sufficiently large, but nevertheless not unphysical, values of the interac-
tion parameter, a dipole-shaped instability was found which resembles that described
by Griffiths et al. (1982).

The predictions of the model were compared with laboratory data. Despite the
fact that the theoretical predictions were for linear waves whereas the data were for
travelling eddies, good agreement was seen, especially in the small-s regime for which
this model was derived. This suggests that the baroclinic instability of the waves may
be an important physical process in the generation of such eddies, even when no
steady current was present beforehand.

The fully nonlinear equations of the model were integrated numerically. The be-
haviour of the system at early times was seen to be qualitatively consistent with the
linear results. The instabilities were preferentially amplified in the downslope direction,
which pointed to the fact that the instability was baroclinic in nature, driven by the
release of potential energy of the bottom current. The perturbations to the downslope
incropping develop into downslope-propagating plumes which subsequently reach the
deepest part of the tank, at which point no more potential energy can be released.

It remains for future work to thoroughly compare the predictions of this model
with experimental observations. Laboratory investigations of dense flows on a slop-
ing bottom tend to be localized sources on the slope (producing a train of eddies
immediately or not at all) or axisymmetric outflow from a central source. An experi-
mental study which has not, to our knowledge, been performed yet is the one where
the current is an initially steady coupled-front dense current on a sloping bottom.
Since experiments taking into account Coriolis effects are typically performed in a
cylindrical rotating tank, it is hoped that the study of this model explicitly in such a
geometry will facilitate the conduction and subsequent interpretation of experiments
on coupled-front geostrophic flows with bottom topography.

Preparation of this paper was supported in part by Natural Sciences and Engi-
neering Research Council (NSERC) Research Grants awarded to G. E. S. and by a
NSERC Postgraduate Scholarship and a Killam Doctoral Scholarship awarded to
P. F. C.
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